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Abstract

In the literature of modern psychometric modeling, mostly related to item response
theory (IRT), the fit of model is evaluated through known indices, such as x2, M2, and
root mean square error of approximation (RMSEA) for absolute assessments as well
as Akaike information criterion (AIC), consistent AIC (CAIC), and Bayesian informa-
tion criterion (BIC) for relative comparisons. Recent developments show a merging
trend of psychometric and machine learnings, yet there remains a gap in the model fit
evaluation, specifically the use of the area under curve (AUC). This study focuses on
the behaviors of AUC in fitting IRT models. Rounds of simulations were conducted to
investigate AUC’s appropriateness (e.g., power and Type I error rate) under various
conditions. The results show that AUC possessed certain advantages under certain
conditions such as high-dimensional structure with two-parameter logistic (2PL) and
some three-parameter logistic (3PL) models, while disadvantages were also obvious
when the true model is unidimensional. It cautions researchers about the dangers of
using AUC solely in evaluating psychometric models.
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Introduction

Item response theory (IRT) models refer to a family of widely used psychometric

models to predict response performance according to the characteristics of items and

examinees (Birnbaum, 1968; Embretson & Reise, 2000/2013; Rasch, 1960; Thissen

& Steinberg, 2009). The effective use of IRT models depends on the degree of good-

ness of fit (GOF) of the chosen model to the actual data. That said, the benefits and

capabilities of IRT can only be truly realized if the model used shows a good fit

(Orlando & Thissen, 2000), else errors in parameter estimation, test equating, and

the detection of differential item functioning (DIF) can occur (Kang et al., 2009).

Therefore, when using IRT for analysis, it is essential to thoroughly examine the cho-

sen model’s fit to the actual data (McKinley & Mills, 1985). Generally, the GOF sta-

tistics used in the IRT can be divided into both item and test levels. Item-level

statistics can be used to screen individual items (Bock, 1972; Chalmers & Ng, 2017;

Drasgow et al., 1985; Kang and Chen, 2008; McKinley & Mills, 1985; Orlando and

Thissen, 2000, 2003; Wright & Masters, 1982; Yen, 1981), while test-level statistics

are used to assess the degree of GOF between the model chosen and the actual data

at the overall level (e.g., Cai et al., 2006; Cai & Hansen, 2013; Maydeu-Olivares,

2013; Maydeu-Olivares & Joe, 2006).

The GOF statistic for test-level testing based on x2 statistic assumes that the model

chosen is the appropriate model, dividing the examinees into groups according to cer-

tain criteria (e.g., their ability or observed scores on the test) and calculating the dif-

ference between the observed and expected frequencies in each group to find the

value of the x2 statistic. These GOF statistics can be categorized into two main types:

full-information test statistics, which are computed from all possible response pat-

terns (full contingency table), and limited information test statistics, which use the

summary characteristics of the full contingency table. The two most commonly used

full-information GOF statistics are Pearson’s test statistic x2 and the likelihood ratio

test statistic G2 (Koehler & Larntz, 1980; McKinley & Mills, 1985). The x2 test

requires a sufficiently large sample size resulting in the expected frequencies in each

group should be no less than five; otherwise, the statistic may violate the x2 distribu-

tion and result in questionable reliability of the test. Specifically, in sparse tables, the

empirical Type I error rates of full-information GOF statistics are inflated. For the

statistic G2, it no longer follows the approximate x2 distribution when the more com-

plex model of the nest models does not fit the data under a large sample (Maydeu-

Olivares & Joe, 2006).

In contrast to full-information test statistics, limited information test statistics

(e.g., Bartholomew & Leung, 2002; Cai et al., 2006; Cai & Hansen, 2013; Cai &

Monroe, 2014; Maydeu-Olivares & Joe, 2006) do not use the full contingency table

but lower-order marginal tables only. Maydeu-Olivares and Joe’s M2 family of statis-

tics using residuals based on lower-order margins of the contingency table are practi-

cally useful in testing the overall GOF of IRT models. However, as the sample size

increases, it becomes too sensitive to reject the fitted model which may have a toler-

able or negligible degree of misfit (Xu et al., 2017). Therefore, root mean square error
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approximation (RMSEA; Steiger & Lind, 1980) calculated based on M2 was used to

measure effect size for evaluating the degree of the model-data misfit (Maydeu-

Olivares & Joe, 2014). Other limited information test statistics such as TLI (Tucker–

Lewis index; Bentler, 1990) and CFI (comparative fit index; Tucker & Lewis, 1973),

initially introduced in structural equation modeling literature to report incremental fit

measure, have also been applied to the GOF assessment in IRT. As a rule of thumb, a

CFI or a TLI � 0.90 is considered an acceptable fit, while a CFI or a � 0.95 is con-

sidered an excellent fit. TLI has a higher penalty for adding parameters than CFI.

They both only applicable when items all have a suitable null model and the data is

not overly sparse.

When several models fit the data, the relative model fit statistics can help select a

more proper model. There is no absolute cutoff point for relative model fit statistics

but a comparison between the values produced from the ‘‘fitting.’’x2 statistics cannot

satisfy this need, while statistics based on information formula are generally adopted,

for instance, Akaike’s information criterion (AIC; Akaike, 1974), the Bayesian infor-

mation criterion (BIC; Schwarz, 1978), the sample-size-adjusted BIC (SABIC), the

consistent AIC (CAIC; Bozdogan, 1987), and the likelihood ratio (LR) test.

However, Kang and Cohen (2007) found that AIC and BIC were accurate when the

data were generated by the one-parameter logistic (1PL) model or the two-parameter

logistic (2PL) model, but they tended to select 2PL models when the true models

were three-parameter logistic (3PL) models.

Recent developments show a merging trend of psychometric and machine learn-

ings (ML), for example, Bergner and colleagues (2012) conducted collaborative fil-

tering analysis through an ML-based IRT; Pliakos and colleagues (2019) adopted

ML approaches to assist the interpretability of IRT parameters; Jiang and colleagues

(2019b) adopted AdaBoost algorithm from ML family to supplement cognitive diag-

nosis modeling; Silva and colleagues (2020) integrated clustering approaches to IRT-

based computerized adaptive testing. It can be found that the trend takes place mostly

in modeling strategies; however, model fit evaluation engrafting from one field to the

other is paid less attention. In this study, the area under curve (AUC), a mainstream

fit index in the ML-relevant literature, is the focus since it has been gradually cited in

psychometric modeling studies (e.g., Gonzalez, 2021; Lee, 2019; Park et al., 2019;

Su et al., 2018; R. Wu et al., 2017, Z. Wu et al., 2020).

Drawn from signal detection theory, AUC is a core ML measure prevalently used

to evaluate the accuracy of classifiers. The superior performance of AUC has been

discussed (e.g., Huang & Ling, 2005), and its applications have been substantially

seen in fields such as bioinformatics, computer science, physics, business, and others.

Recently, AUC has been applied to more educational and psychological research to

examine the accuracy of certain computerized mechanisms, for instance, early warn-

ing systems and corresponding indicators empower AUC to evaluate classifiers (e.g.,

Bowers & Zhou, 2019; Carlson, 2018; Jiang et al., 2019a; Johnson & Semmelroth,

2010; Nicholls et al., 2010; Stuit et al., 2016), and intelligent tutoring systems devise

AUC to compare the performance of ML predictors (Khajah et al., 2016; Le et al.,
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2018; Piech et al., 2015; Walker & Jiang, 2019). In terms of its application to psycho-

metric modeling, AUC is a rarely investigated from a systemic view, although it has

been quoted directly in a few studies under the context of IRT models (e.g., Cheng

et al., 2019; Niemeijer et al., 2020; Svicher et al., 2019; Windle & Windle, 2017).

To summarize, AUC’s performance in evaluating the fit of psychometric models

remains unknown, yet researchers using IRT and other similar diagnostic analytics

make critical inferences based on its estimates. Therefore, it is necessary to assess the

appropriateness of adopting AUC to evaluate the targeted models from two perspec-

tives: (a) selecting the best-fitting one and (b) serving as an alternative to absolute fit

indices and its plausible recommendation.

Method

AUC is an extension of the receiver operating characteristics (ROC) curve which

summarizes label-assignment performance by combining a confusion matrix (i.e., 2

3 2 table including true/false positive and true/false negative counts) at all threshold

levels, which of the changes would alter classification accuracies. The confusion

matrix and equations of several common metrics that can be calculated from it are

shown in Figure 1. For a binary classifier, if the predicted category of the instance is

1, it is labeled as positive. If the predicted category of the instance is 0, it is labeled

as negative. And label true for a correct prediction, label false for an incorrect predic-

tion. Thus, each instance can be mapped to one cell of the confusion matrix, which

aggregates the counts of instances for each of the four categories.

The ROC curve is drawn on a two-dimensional plane, the horizontal coordinate of

which is the false positive rate (FPR) and the vertical coordinate is the true positive

rate (TPR). A discrete classifier produces one confusion matrix and corresponding to

Figure 1. Confusion Matrix and Common Performance Metrics.
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a single point in ROC space. For probability or scoring classifier, various thresholds

can be set to get the confusion matrixes, and each threshold value produces a different

point in ROC curve. Tom Fawcett (2006) described the algorithm for efficient gener-

ation of ROC curves is in detail.

AUC turns the ROC curve into a numeric representation of performance for a bin-

ary classifier. Essentially, AUC aggregates the performance of a model across all

threshold values. AUC is the area under ROC curve and ranges between 0 and 1: the

best possible value indicates a perfect classifier, while zero if all the predictions are

wrong. The AUC from a finite set of instances can be calculated as follows: first sort

the instances by their predicted probability of being positive, then set these predicted

probabilities as threshold values in descending order and calculate TPR and FPR

accordingly. This would draw a series of upward and rightward points on the ROC

plane and form the ROC curve. Finally, the AUC can be calculated as the sum of

successive areas of trapezoids enclosed by instance points i and the latter point i + 1

and the horizontal axis (FPR), as described in the following equation:

AUC =
1

2

Xm�1

i = 1

FPRi + 1 � FPRið Þ TPRi + 1 + TPRið Þ , ð1Þ

where x2 represents the number of instances. Figure 2 shows an example of an ROC

curve on a set of four instances. The instances, two positive and two negative, and

their corresponding coordinates by setting each score as threshold are shown in the

table beside the graph. The AUC for this example can then be calculated as1

AUC =
1

2
0:5� 0ð Þ 0:5 + 0:5ð Þ+ 0:5� 0:5ð Þ 1 + 0:5ð Þ+ 1� 0:5ð Þ 1 + 1ð Þ½ �= 0:75:

To conclude, AUC is not dependent on classification threshold (i.e., classification-

threshold invariant) and therefore can be used without additional subjective

Figure 2. Scores and Classifications of Four Instances, and the Resulting ROC Curve.
Note. ROC = receiver operating characteristics.
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judgments. AUC, however, is for one binary outcome variable but not multivariate

scenarios. This study proposed using AUC to construct a statistic for evaluating the

IRT model fit. From the similar vein that test-level M2 is constructed from its item-

level statistics, AUC statistic in this study measures the average classification accu-

racy across all items with the following form:

avgAUC =
XJ

j = 1

AUCj = J , ð2Þ

where AUCj denotes the area under ROC curve of the item j classifier under the

examined model and J represents the total number of items. AUCj quantified the tra-

deoff between the sensitivity and specificity of the prediction of binary item

responses. One interpretation of AUCj is the probability that the IRT model ranks a

random case with a correct response for item j higher than a random case with an

incorrect response. Thus, avgAUC measures the average performance of predicting

item response by the model across all possible classification thresholds. Note that the

AUC is usually used with cross-validation method in the ML literature. However, in

this study, we used all data points to calculate the proposed AUC statistic like how

other GOF indices were computed. The reason is that cross-validation procedures are

meant for prediction evaluation measuring the potential errors for unseen data, while

we emphasize model evaluation showing how a model fits the collected information.

Simulation Study

Data Generation

Following the study design of Xu et al. (2017), multiple types of unidimensional and

multidimensional IRT (MIRT) models were adopted for data generation. The unidi-

mensional IRT models were the 2PL and the 3PL models. To maintain simplicity

without losing generalizability, only compensatory MIRT models were included in

the simulations as this genre is more commonly seen (DeMars, 2016; Immekus et al.,

2019). For compensatory MIRT models, a low ability in one dimension can be com-

pensated by a high ability in other dimension(s) to reach a high expected probability

of a correct answer.

Four types of model structures were adopted for data generation: (a) unidimen-

sional structure, indicating that each of the items on the test measures one dimension;

(b) multidimensional between-item structure (or equivalently simple structure), indi-

cating that a test contains multiple unidimensional subscales; (c) partially cross-

loading structure such that several items measuring a single dimension while others

corresponding to multiple dimensions; (d) completely cross-loading structure (or

equivalently within-item multidimensionality), implying that each of the items on

the test measures more than one dimension.

Specifically, for the unidimensional structure, a unidimensional (1D) model with

all items measuring the same dimension was adopted for data generation in the study.
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For the multidimensional between-item structure, a four-dimensional simple structure

(4DS) was used. For the partially cross-loading structure, a two-dimensional partial

simple structure model (2DPS) was used. For the completely cross-loading structure,

a two-dimensional within-item (2DW) structure model was used in the simulation.

Table 1 provides the labels of all the models used for data generation, resulting in 32

conditions in data generations: (a) eight latent factor structures were simulated: two

unidimensional structures (1D_2PL and 1D_3PL models) and six multidimensional

structures (2DW_2PL/3PL models, 2DPS_2PL/3PL models, and 4DS_2PL/3PL mod-

els); (b) two levels of sample size (i.e., 750 and 1,500); and (c) two levels of test

length (i.e., 20 and 40) were used to generate data. Each condition was experimented

with 500 replications, leading a total of 16 000 (500 3 32) generated data sets. For

each data set, the Rasch, 2PL, and 3PL models with the same latent factor structures

as the generated models were fitted. AIC, BIC, and avgAUC were then obtained from

the three models fitted to each data set.

Models for Data Simulation

The general form of the 2PL/3PL IRT model used for data simulation was

P Xij = 1 j ui

� �
= gj + 1� gj

� � exp Skajkuik � bj

� �

1 + exp Skajkuik � bj

� � , ð3Þ

where x2 is an ability vector for person i; uik denotes person i’s latent trait for dimen-

sion k; ajk is the item discrimination or item slope of item j for dimension k; bj is the

difficulty parameter for item j; and gj is the guessing parameter for item j represent-

ing the lower bound of the item response function curve. The 1D model was obtained

when k = 1 and gj = 0 (1D_2PL) and when k = 1 and gj was freely estimated

(1D_3PL). The 2DW models were obtained when k = 2 and gj = 0 (2DW_2PL) and

when k = 2 and gj were freely estimated (2DW_3PL). For 2DPS model was obtained

Table 1. Description of the Naming Convention for Data Structures.

Data structures for data generation

1D_2PL One-dimensional 2PL model
1D_3PL One-dimensional 3PL model
2DW_2PL Two-dimensional within-item 2PL model
2DW_3PL Two-dimensional within-item 3PL model
2DPS_2PL Two-dimensional partially simple structure 2PL model
4DS_2PL Four-dimensional simple structure 2PL model
4DS_3PL Four-dimensional simple structure 3PL mode

Note. 1D = unidimensional; 2PL model = two-parameter logistic model; 3PL model = three-parameter

logistic model; 2DW = two-dimensional within-item; 2DPS = two-dimensional partial simple structure

model; 4DS = four-dimensional simple structure.
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when k = 2, gj = 0 (2PL) or freely estimated (3PL), and some ajk are constrained to 0

so that around one-third item set measures the first dimension (six items for 20-item

test and 13 items for 40-item test), another one-third items measure the second

dimension, and the third set measures both dimensions (eight items for 20-item test

and 14 items for 40-item test). The 4DS models were obtained when k = 4, and gj = 0

(2PL) or freely estimated (3PL) with the constraint ajk = 0 for a j-k-combo conditions

such that each of the four different item sets measured its own single dimension. For

example, for the 20-item test, there are five items loading on each dimension. For

the 40-item test, there were 10 items loading on each dimension.

Model Parameter Values for Data Simulation

For the unidimensional IRT model (1DS_2PL/3PL), a scalar of person latent trait

parameters was drawn from a standard normal distribution. For the multidimensional

IRT model, a vector of the person latent trait values was drawn from a multivariate

normal distribution with the means center at zeros and the covariance matrix of S

that has 1 s in the diagonals. The moderate factor correlations in S were set to 0.5 for

the 2DW and 2DPS models and 0.7 and 0.5 for the 4DS model. The item difficulty

parameters (bj) were randomly generated from a truncated normal distribution with

lower bound 22 and upper bound +2 using the R package truncnorm (Mersmann

et al., 2018). The item slope or discrimination parameters (ajk) for dimension k were

generated independently from the truncated lognormal distribution with a mean of 0

and a standard deviation of .5 and truncated within [.5, 4] using the R package

EnvStats (Millard, 2013). For 3PL models, guessing parameters (cj) were randomly

generated from uniform distribution with the range [0, .3]. All data sets were gener-

ated using the R package mirt (Chalmers, 2012). For each simulation model in each

replication, item parameters were regenerated following the same procedures. The

model estimation was also implemented by the mirt package (Chalmers, 2012), and

the caret package (Kuhn, 2021) and the pROC package (Robin et al., 2011) in R (ver-

sion 4.1.1; R Core Team, 2021) were used to calculate the confusion matrix and

AUC, respectively.

For model estimation, the R (version 4.1.1; R Core Team, 2021) language with the

mirt package was used with the standard expectation–maximization (EM) algorithm

with a fixed quadrature for the 1DS, 2DS, and 2DPS models and quasi-Monte Carlo

EM estimation for 4DS. The standard EM algorithm is generally effective with 1 to 3

factors, but methods such as the quasi-Monte Carlo EM algorithm and other Monte

Carlo methods were used when the dimensions were three or more for efficacy. To

minimize the chance of convergence problems in the 2PL and the 3PL model estima-

tion, item parameter priors—lognormal for slope parameters: a ; lognormal(0, :52)

and normal distribution for guessing parameters: c ; normal(0:18, 0:1)—were used.
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Result

Convergence Rates

Convergence rates for 88 of the 32 conditions with three analyzed models per condi-

tion (91.7%) were above 90%. The eight cases showing lower than 90% convergence

rate were from the 4DS structure models. For all eight cases, the Rasch models were

fitted with convergence rates from .18 to .56.

Comparing Relative Model–Data Fit Indices: Type I Error Rate and Power

To evaluate the performance of the relative model–data fit indices, the AIC, the BIC,

and AUC values were calculated for all replications. For each replication, the best-

fitting model was chosen according to each index (i.e., the selecting criteria were both

the smallest AIC and BIC values and with the largest AUC value). The proportion of

each analyzed model selected by each index across all replications are computed and

compared. The fit indices which show higher proportions of models consistent with

the generating model have better performance. Table 2 shows the proportions of

replications for which each fit index selected the analyzed model as the best-fitting

model. In general, AIC and BIC prefer the 2PL models as the best-fit model, while

AUC performs better with more parameters and a more complex structure of the true

generating model.

To illustrate, in row 1, under the conditions with a sample size of 750, number of

items of 20, and true model being the unidimensional 2PL model (1D_2PL), AIC

correctly selected the estimated 1D_2PL model as the best-fitting model in all of the

replications, while BIC correctly selected the estimated 1D_2PL model as the best-

fitting model in 97.4% of the replications, but incorrectly selected the unidimensional

Rasch model as the best-fitting model in 2.6% of the replications. In addition, AUC

incorrectly selected the unidimensional Rasch model as the best-fitting model in all

the replications. The results show how often fit indices were able to determine the

true generating model (i.e., power) and which estimation models were incorrectly

selected as the best-fitting model when the correct model was not identified.

In general, the AIC showed sufficient power under conditions when the 2PL was

the true model structure and when the data were generated from unidimensional

(1D_2PL, see rows 1–4 in Table 2) or two-dimensional model structures (2DPS_2PL

and 2DW_2PL, see rows 5–12 in Table 2). However, when the data were generated

from high-dimensional structure (i.e., the 4DS_2PL model), the true model was less

likely to be identified as the best-fitting model (over 80% proportions) when the

number of items was relatively small (J = 20). Moreover, the AIC indices have no

power selecting 3PL models as the AIC never selected 3PL models as the best-fitting

model for all replications under all conditions of this study (see rows 17–32 in Table

2). The results showed that, regardless of whether the data were generated from a

2PL or a 3PL model, the AIC’s choice across conditions exhibited a high consistency

in preferring the unidimensional/multidimensional 2PL as the best-fitting model,
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except in the condition of true model being high-dimensional AIC preferred simple

structure model (see rows 13–14 and 29–30 in Table 2).

Similar to the AIC, the BIC has similar issues when true models are 3PL models

or have high-dimensional structures. First, the BIC never selected 3PL models as the

best-fitting model for all replications under all conditions in this study, making the

power of BIC all zero when the data were generated by unidimensional/multidimen-

sional 3PL models. Second, the BIC preferred the Rasch model as the best-fitting

model under the conditions of high-dimensional model structure than the AIC, which

may attribute to the fact that the BIC has a higher penalty for model complexity. In

addition, sample size appeared to have impact on the performance of the BIC.

Regardless of whether the generating model was the 2PL or the 3PL model, the rate

at which BIC selected 2PL models as the best-fit models increased as the sample size

increased, except for the cases where the 2PL models were selected at a rate of 1.

Thus, we found that BIC behave similarly with AIC in term of power but sample

sizes have more influence on the selection of the BIC. These results were consistent

with previous research done by Kang and Cohen (2007), in which data were gener-

ated from the unidimensional 1PL, 2PL, or 3PL model and analyzed using each of

these three models. When data were generated by a 1PL or 2PL model, AIC and BIC

could select the generating model as the best model in almost every replication.

However, when data were generated by a 3PL model, the 3PL model was not selected

by BIC for any of the replications and AIC also demonstrated a preference for selec-

tion of the simpler model. The study of Lin and Dayton (1997) also found that the

BIC demonstrated a preference for selection of the simpler model. This may be

related to the quality of the items, and that when using the 3PL model to generate

data, a larger guessing parameter might enable the AIC and BIC more inclined to

choose the correct 3PL model.

Compared with the information criterion (AIC, BIC), AUC showed some advan-

tage under certain conditions such as high-dimensional structure with 2PL and some

3PL models. When the data were generated by the 2DW_3PL model and the number

of items was 40, the true 2DW_3PL model more frequently obtained larger statistic

values than other incorrect models, allowing the AUCs to have powers of 0.69 (for

the sample size of 750) and 0.948 (for the sample size of 1,500) under this condition

(see rows 27 and 28 in Table 2). The AUC also showed better performance than the

AIC and the BIC in selecting the 4DS_2PL model as the best-fitting model when it

was the true mechanism. However, when the data were generated by unidimensional

2PL/3PL models, AUC performed poorly by always selecting Rasch models as the

best-fitting model.

Note that the selection of the Rasch model as the best-fitting model using the max-

imum average AUC as a criterion for the entire test does not mean that every item in

the test obtained the maximum AUC value when analyzed using the Rasch model.

To explore the relationship between item characteristics and AUC values, we further

analyzed the item-level AUC under the condition that the sample size was 750 and

the test length was 20, with data generated by the 1D_2PL model.
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In the 500 replications, we recorded the calibrating model chosen for each item

according to whose AUC value was the largest. Table 3 shows the frequency of the

Rasch, 2PL and 3PL models being selected as the best-fitting model among 10,000

items (20 items 3 500 repetitions), as well as the average AUC, discrimination and

difficulty parameters of the items for different calibrating model. The results of Table

3 showed that when the difficulty parameter was closer to zero, AUC preferred the

Rasch model as the best item fitting model, and it was chosen the most often. When

the discrimination parameter was relatively large, AUC preferred the 2PL model as

the best item fitting model, which indicates that the prediction accuracy of item

responses estimated by the model were also higher; thus, the average AUC value of

the items selected for the 2PL model was the largest. In fact, for these 10,000 items

under this condition, the AUC values of the items are significantly correlated with

their discrimination parameters (r = :369, p\:01). When the data were generated by

the 2PL model, the Rasch model was selected as the best-fitting model at the test

level due to it obtaining the largest average AUC values, probably because the test

had the most items with moderate difficulty. That said, AUC perform best on model

selection when the test has most moderately difficult items.

Comparing Global Fit Indices: Average Values and Rejection Rates

To examine whether AUC could be used for model evaluation, we also examined

several frequently used GOF indices—M2, CFI, and TLI for comparison. We

selected GOF indices from two perspectives: (a) AUC has been recognized as a spe-

cial GOF index in real settings; for example, Pham et al. (2021) outlined ‘‘. . . has

the highest goodness-of-fit (AUC = 0.970) . . .’’ and Finlayson et al. (2018) stated ‘‘.

. . goodness of fit, with an AUC of 0.73. . .’’; (b) although indices such as RMSEA,

CFI, and TLI have been used in confirmatory factor analysis more, IRT literature

uses them to represent GOF as well (Chernyshenko et al., 2001; Huggins-Manley &

Han, 2017). The comparison is not primarily targeting classification accuracy.

Instead, the accuracy (e.g., AUC) and mean squared error distance (e.g., standardized

Table 3. The Description of Item Level AUC and Item Parameters in the 500 Repetitions
Under the Condition that Sample Size of 750, Test Length of 20, and Data Generated by the
2PL Model.

Calibrating model Frequency AUC Discrimination Difficulty

Rasch 4803 .743 .861 –0.313
2PL 2937 .861 1.734 –0.374
3PL 2260 .827 1.213 1.109

Note. AUC = area under curve; 2PL model = two-parameter logistic model; 3PL model =

three-parameter logistic model.
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root mean square residual, SRMR; see Asparouhov & Muthén, 2018) are both ways

of evaluating the model fit.

The mean values and rejection rates of the RMSEA, CFI, TLI, and average AUC

among the 500 replicates under each condition are shown in Table 4, with the cells

where the calibrating models were the data generating models are in bold. In the col-

umns corresponding to RMSEA in Table 4, the rejection rates refer to the frequency

of using M2 statistics to reject the null hypothesis among the 500 repetitions by set-

ting the nominal significance level at 0.05. For TLI and CFI, values less than 0.9 were

considered unacceptable. Only the mean values of average AUC values are presented

in Table 4 to determine the cutoff line that requires further discussion.

M2 statistics seem impractical when dealing with high-dimensional data regarding

empirical Type I error rates. The rejection rates of M2 under the 1D_2PL and the

1D_3PL model cases were under the .05 significance level; the finding was similar to

what Xu et al. (2017) reported in their study. However, when the generative model

was the 2PL model and has a multidimensional structure, or the generative model

was the 3PL model with four dimensions, the empirical Type I error rates of M2 were

much higher than 0.05 and were nearly 1 with the increase in sample size and number

of items.

The power of M2 was the rate of correctly rejecting the null hypothesis, while the

estimate model did not match the generating model. The power reached 1 when cali-

brated with Rasch models regardless of the generated data structures. However, M2

did not show enough power to detect misfits when calibrating data generated by the

unidimensional 3PL model with unidimensional 3PL, and it was below .1.

TLI and CFI performed similarly in that they both had large empirical Type I error

rates when the generated model was the 4DS_2PL model. They were insensitive to

model misspecification except when the generated model structure was four-dimen-

sional, which is partly related to the well-fitted threshold set at 0.9.

As shown in Table 4, for the calibrating models identical to the data generating

models, the mean values of CFI and TLI are all greater than 0.95 and the mean val-

ues of RMSEA are less than 0.05, representing an excellent fit. For the same data,

the more complex the calibrating model is for the same data, the larger the corre-

sponding CFI and TLI values and the smaller the RMSEA values are, even though

the TLI already penalizes more complex models. The results make RMSEA, CFI,

and TLI inappropriate for selecting more concise generative models.

Unlike other absolute GOF indices, for the same data, the degree of fit measured

by the average AUC (i.e., the average model predicts accuracy) may not improve

when a more complex estimate model is used. The average AUC also did not

improve as the sample size increased. As shown in Table 4, when the structure of the

generated data is 2DW, the AUC values are higher than other generating structures,

all greater than 0.8. This suggests that thresholds for absolute fit criteria of average

AUC may need to be set for each combination of conditions, which requires further

discussion.
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Discussion

AUC is the standard choice in assessing classification accuracies, mainly produced

by predictive models. It circumvents the necessity of subjective threshold decisions.

This study is an initial attempt to systemically investigate the behaviors of AUC in

the context of psychometric models, mainly IRT ones as the simulations demon-

strated. Based on the present findings, we do not recommend using AUC solely for

evaluating psychometric models, neither relative model comparisons nor absolute fit

assessments. As the simulation results entailed, none of the statistics delivers a pana-

cea to various model-fitting scenarios; again, this finding verifies the recommended

practice of using multiple GOF statistics when judging modeling qualities.

In terms of relative comparisons, AIC, BIC, and AUC perform inconsistently

across simulated conditions; it is reasonable because the mechanisms are determined

by the indices’ components and calculation rules. AIC and BIC are based on likeli-

hood and inflated by the numbers of parameters, while AUC is modeling-free and

parameter numbers are off consideration. Theoretically, since the mechanisms are

substantively different, using AUC to select models, like AIC and BIC do, may not

be reasonable, yet such adoptions have been found in the literature. In other words,

AIC and BIC are informing researchers how good a model fits for a specific misclas-

sification cost, and AUC indicates how good the model would work, on average,

across all misclassification costs. Surprisingly, AUC did outperform its counterparts

in many situations. Jointly using AIC, BIC, and AUC can be a solution, which has

already been reported in published studies (Xiao et al., 2019).

Presumably, AUC could be regarded as an absolute fit index as it essentially uti-

lizes information from residuals akin to the famous SRMR. Following the same fash-

ion, AUC was expected to have a proposed cutoff (i.e., rule of thumb) to recognize a

model that fits the data well. In terms of numeric ranges, AUC was not as ‘‘delicate’’

as other indices (e.g., CFI and TLI) of which perfect conditions (i.e., the chosen

model was the true model) produce values from 0.95 to 1. The highest AUC, seen

from the simulation, rarely reaches 0.90, which clearly conflicts with what research-

ers usually think is a delicate threshold. Furthermore, finding a cutoff to discover a

true model seems not plausible. To be concrete, selecting any values between 0.8

and 0.9 does not grant a correct decision in Table 4.

The causes of AUC’s incapacities in the psychometric model evaluations can be

scattered and indeed demand more investigations in the future, but some obviously

suspicious can be reasoned in this discussion. AUC is critically a type of discrimina-

tion indicating the possibility that a ‘‘presence’’ will receive a higher predicted value

than an ‘‘absence’’ (Hosmer & Lemeshow, 2000, p.162). Indirectly using the actual

probability values, AUC is insensitive to transformations of the predicted probabil-

ities that preserve their ranks (Ferri et al., 2005), making it plausible that a poor

model possesses a good discrimination power, and vice versa. In the case where

probabilities for presences are only moderately higher than those for absences, a

well-fitted model can have low AUC (Lemeshow & Hosmer, 1982): if in a test where

some items do show the patterns as mentioned earlier, average AUC is likely to fail
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to discriminate. AUC weights false positive and false negative errors equally, while

in many applications of distribution modeling, these two errors may not be equally

important. In situations where misclassification costs are inconsistent, summarizing

over all possible threshold values is questionable. The way IRT likelihood function

weights the two errors is unknown, and therefore, summarizing corresponding perfor-

mance over all possible thresholds may not embrace the features of psychometric

models. However, as the sample size increases, it becomes too sensitive to reject the

fitted model, which may have a tolerable or negligible degree of the misfit. Previous

work suggested that AIC and BIC showed very poor performances in finding the cor-

rect 3PL model (Kang & Cohen, 2007; Lin & Dayton, 1997). We believe that this

may be related to the quality of the items and that when using the 3PL model to gen-

erate data, a larger guessing parameter might enable the AIC and BIC to be more

inclined to choose the correct 3PL model.
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Notes

1. Equation (1) is the summation of the areas of a series of trapezoids. Since the positive and

negative instances in this case have different scores (predicted probabilities), the shape

enclosed by the two successive points and the X-axis in the ROC plane is actually a spe-

cial case of trapezoids—rectangles. More complicated situations considering positive and

negative instances with same scores can be seen in Tom Fawcett (2006).
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Maldonado, H. U. Hoppe, R. Luckin, M. Mavrikis, K. Porayska-Pomsta, B. McLaren & B.

du Boulay (Eds.), Artificial intelligence in education (pp. 239–252). Springer. https://

doi.org/10.1007/978-3-319-93843-1_18

Lee, Y. (2019). Estimating student ability and problem difficulty using item response theory

(IRT) and TrueSkill. Information Discovery and Delivery, 47(2), 67–75. https://doi.org/

10.1108/IDD-08-2018-0030

Lemeshow, S., & Hosmer, D. W. Jr. (1982). A review of goodness of fit statistics for use in

the development of logistic regression models. American Journal of Epidemiology, 115(1),

92–106. https://doi.org/10.1093/oxfordjournals.aje.a113284

Lin, T. H., & Dayton, C. M. (1997). Model selection information criteria for non-nested latent

class models. Journal of Educational and Behavioral Statistics, 22, 249–264.

Maydeu-Olivares, A. (2013). Goodness-of-fit assessment of item response theory models.

Measurement, 11, 71–101.

Maydeu-Olivares, A., & Joe, H. (2006). Limited information goodness-of-fit testing in

multidimensional contingency tables. Psychometrika, 71(4), 713–732. https://doi.org/

10.1007/s11336-005-1295-9

Maydeu-Olivares, A., & Joe, H. (2014). Assessing approximate fit in categorical data analysis.

Multivariate Behavioral Research, 49(4), 305–328. https://doi.org/10.1080/00273171

.2014.911075

McKinley, R. L., & Mills, C. N. (1985). A comparison of several goodness-of-fit statistics.

Applied Psychological Measurement, 9(1), 49–57. https://doi.org/10.1177/0146621

68500900105

Mersmann, O., Trautmann, H., Steuer, D., & Bornkamp, B. (2018). truncnorm: Truncated

normal distribution (Version 1.0-8). https://CRAN.R-project.org/package=truncnorm

Millard, S. P. (2013). EnvStats: An R package for environmental statistics. Springer. https://

doi.org/10.1007/978-1-4614-8456-1

Nicholls, G., Wolfe, H., Besterfield-Sacre, M., & Shuman, L. (2010). Predicting stem degree

outcomes based on eighth grade data and standard test scores. Journal of Engineering

Education, 99(3), 209–223. https://doi.org/10.1002/j.2168-9830.2010.tb01057.x

Niemeijer, K., Feskens, R., Krempl, G., Koops, J., & Brinkhuis, M. J. S. (2020, March 23–27).

Constructing and predicting school advice for academic achievement: A comparison of

item response theory and machine learning techniques. In Proceedings of the Tenth

International Conference on Learning Analytics & Knowledge (pp. 462–471). Association

for Computing Machinery. https://doi.org/10.1145/3375462.3375486

Orlando, M., & Thissen, D. (2000). Likelihood-based item-fit indices for dichotomous item

response theory models. Applied Psychological Measurement, 24(1), 50–64. https://doi.org/

10.1177/01466216000241003

Park, J. Y., Cornillie, F., van der Maas, H. L., & Van Den Noortgate, W. (2019). A

multidimensional IRT approach for dynamically monitoring ability growth in computerized

practice environments. Frontiers in Psychology, 10, Article 620. https://doi.org/10.3389/

fpsyg.2019.00620

606 Educational and Psychological Measurement 83(3)



Pham, B. T., Luu, C., Van Phong, T., Trinh, P. T., Shirzadi, A., Renoud, S., & . . .Clague, J. J.

(2021). Can deep learning algorithms outperform benchmark machine learning algorithms

in flood susceptibility modeling? Journal of Hydrology, 592, Article 125615.

Piech, C., Spencer, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L., & Sohl-Dickstein, J.

(2015). Deep knowledge tracing. https://arxiv.org/abs/1506.05908

Pliakos, K., Joo, S. H., Park, J. Y., Cornillie, F., Vens, C., & Van den Noortgate, W. (2019).

Integrating machine learning into item response theory for addressing the cold start

problem in adaptive learning systems. Computers & Education, 137, 91–103. https://

doi.org/10.1016/j.compedu.2019.04.009

Rasch, G. (1960). Studies in mathematical psychology: I—Probabilistic models for some

intelligence and attainment tests. Nielsen & Lydiche.

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation

for Statistical Computing. https://www.R-project.org/

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., & Müller, M.

(2011). pROC: An open-source package for R and S+ to analyze and compare ROC curves.

BMC Bioinformatics, 12(1), Article 77. https://doi.org/10.1186/1471-2105-12-77

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

Silva, W., Spalenza, M., Bourguet, J. R., & de Oliveira, E. (2020). Towards a tailored hybrid

recommendation-based system for computerized adaptive testing through clustering and

IRT. In Proceedings of the 12th International Conference on Computer Supported

Education (CSEDU 2020) (Vol. 1, pp. 260–268). https://doi.org/10.5220/0009419

902600268

Steiger, J. H., & Lind, J. C. (1980) May. Statistically based tests for the number of common

factors [Paper presentation]. Annual Meeting of the Psychometric Society, Iowa City, IA,

United States.

Stuit, D., O’Cummings, M., Norbury, H., Heppen, J., Dhillon, S., Lindsay, J., & Zhu, B.

(2016). Identifying early warning indicators in three Ohio school Districts (REL 2016-

118). Regional Educational Laboratory Midwest. https://ies.ed.gov/ncee/edlabs

Su, Y., Liu, Q., Liu, Q., Huang, Z., Yin, Y., Chen, E., & . . .Hu, G. (2018, April 26). Exercise-

enhanced sequential modeling for student performance prediction. In. Proceedings of the

AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). https://ojs.aaai.org/index.php/

AAAI/article/view/11864

Svicher, A., Romanazzo, S., De Cesaris, F., Benemei, S., Geppetti, P., & Cosci, F. (2019).

Mental Pain Questionnaire: An item response theory analysis. Journal of Affective

Disorders, 249, 226–233.

Thissen, D., & Steinberg, L. (2009). Item response theory. In R. E. Millsap & A. Maydeu-

Olivares (Eds.), The SAGE handbook of quantitative methods in psychology (pp. 148–177).

SAGE. http://dx.doi.org/10.4135/9780857020994.n7

Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor

analysis. Psychometrika, 38(1), 1–10. https://doi.org/10.1007/BF02291170

Walker, K. W., & Jiang, Z. (2019). Application of adaptive boosting (AdaBoost) in demand-

driven acquisition (DDA) prediction: A machine-learning approach. The Journal of

Academic Librarianship, 45(3), 203–212.

Windle, M., & Windle, R. C. (2017). The measurement of adolescent alcohol problems via

item response theory and their 15-year prospective associations with alcohol and other

psychiatric disorders. Alcoholism: Clinical and Experimental Research, 41(2), 399–406.

Wright, B., & Masters, G. (1982). Rating Scale analysis. MESA Press.

Han et al. 607



Wu, R., Xu, G., Chen, E., Liu, Q., & Ng, W. (2017, April 3–7). Knowledge or gaming?

Cognitive modelling based on multiple-attempt response. In Proceedings of the 26th

International Conference on World Wide Web Companion (pp. 321–329). https://doi.org/

10.1145/3041021.3054156

Wu, Z., Ioannidis, N. M., & Zou, J. (2020). Predicting target genes of non-coding regulatory

variants with IRT. Bioinformatics, 36(16), 4440–4448.

Xiao, Z., Shi, Z., Hu, L., Gao, Y., Zhao, J., Liu, Y., Xu, Q., & Huang, D. (2019). A new

nomogram from the seer database for predicting the prognosis of gallbladder cancer

patients after surgery. Annals of Translational Medicine, 7(23), Article 738. https://doi.org/

10.21037/atm.2019.11.112

Xu, J., Paek, I., & Xia, Y. (2017). Investigating the behaviors of M2 and RMSEA2 in fitting a

unidimensional model to multidimensional data. Applied Psychological Measurement,

41(8), 632–644.

Yen, W. M. (1981). Using simulation results to choose a latent trait model. Applied

Psychological Measurement, 5(2), 245–262. https://doi.org/10.1177/014662168100500212

608 Educational and Psychological Measurement 83(3)


